

OPEN PLATFORM FOR REALIZING ZERO DEFECTS IN

CYBER PHYSICAL MANUFACTURING

D4.2 – Methodologies and first implementations

6 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 2

Dissemination Level:

PU Public, fully open

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/EU-R EU RESTRICTED under the Commission Decision No2015/444

Classified C-UE/EU-C EU CONFIDENTIAL under the Commission Decision No2015/444

Classified S-UE/EU-S EU SECRET under the Commission Decision No2015/444

Type

R Document, report (excluding the periodic and final reports)

DEM Demonstrator, pilot, prototype, plan designs

DEC Websites, patents filing, press & media actions, videos, etc.

DATA Data sets, microdata, etc.

DMP Data management plan

ETHICS Deliverables related to ethics issues.

SECURITY Deliverables related to security issues

OTHER Software, technical diagram, algorithms, models, etc.

Version 1.0

WP 4

Delivery Date 6 Dec 2023

Dissemination level PU

Deliverable lead LMS

Authors LMS, INTRA, AIMEN, IPB

Reviewers INTRA, MSI

Abstract

Definition of the methodologies used in the developed software applications and
in the openZDM platform. This document elaborates on the methodologies applied
in the development process of the first version of the openZDM project’s software
components and its platform business layer. Furthermore, it defines the metadata
model of the Asset Administration Shell.

Keywords
Software development methodologies, Asset Administration Shell metadata
model, platform integration, software user experience

License
This work is licensed under a Creative Commons Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0). See:
https://creativecommons.org/licenses/by-nd/4.0/

https://creativecommons.org/licenses/by-nd/4.0/

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 3

Version History

Version Date Owner Author(s) Changes to previous version

0.1 2023-07-31 LMS LMS Outline

0.5 2023-07-24 LMS LMS, AIMEN, INTRA Content provided

0.9 2023-09-24 LMS LMS, INTRA Revised version

1.0 2023-12-08 LMS LMS Final draft

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 4

Table of Contents

Version History ... 3

Table of Contents.. 4

List of Abbreviations & Acronyms .. 5

List of Figures .. 6

List of Tables ... 6

Executive Summary .. 7

1. Introduction .. 8

2. Methodologies .. 9

2.1 Data modelling .. 9

2.2 Metadata modelling ... 9

2.3 Digital Twin Toolset .. 11

2.4 Data-driven Quality Assessment Modules ... 12

2.5 Decision support tool for alternative process configuration .. 13

2.6 Platform .. 14

3. First implementations ... 15

3.1 Models .. 15

3.1.1 Data model ... 15

3.1.2 Metadata model ... 17

3.2 Applications .. 18

3.2.1 Digital Twin Toolset .. 18

3.2.2 Data-driven Quality Assessment Modules ... 21

3.2.3 Decision support tool .. 22

3.3 Platform .. 23

4. Risks and Challenges ... 26

5. Lessons learned .. 27

6. Conclusions ... 27

7. References .. 28

8. Appendices ... 29

Appendix I The AAS of a robot created using the openZDM template .. 29

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 5

List of Abbreviations & Acronyms

AAS : Asset Administration Shell

AASX : Eclipse AASX Package Explorer

CIM : Common Information Model

CSS : Cascading Style Sheets

DIMOFAC : Digital Intelligent MOdular FACtories [1]

DST : Decision Support Tool

DT : Digital Twin

DTT : Digital Twin Toolset

HTTP : Hypertext Transfer Protocol

ICT : Information and Communication Technologies

IDS : International Data Spaces

IDTA : Industrial Digital Twin Association

KPI : Key Performance Indicator

LCA : Life Cycle Assessment

MIP : Mixed Integer Programming

ML : Machine Learning

MQTT : Message Queuing Telemetry Transport

NDI : Non-destructive instrument

RAMI4.0 : Reference Architectural Model Industry 4.0

RFR : Random Forrest Regressor

SLSQP : Sequential Least Squares Programming

UI : User Interface

UML : Unified Modeling Language

ZDM : Zero-Defect Manufacturing

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 6

List of Figures

Figure 1: High-level representation of the reference openZDM system.. 8

Figure 2: RAMI 4.0 Architecture ... 10

Figure 3: Overview metamodel of the Asset Administration Shell .. 10

Figure 4: The hybrid digital twin model schema used in the DTT .. 11

Figure 5: Data-driven quality assessment modules classification based on main objective/functionality. 12

Figure 6: Methodology followed in the DST ... 14

Figure 7: Waterfall development methodology of the openZDM platform ... 14

Figure 8: openZDM developed NDI’s AAS submodels .. 15

Figure 9: Identification submodel ... 16

Figure 10: Hierarchical structures submodel .. 16

Figure 11: Capabilities and skills submodels .. 17

Figure 12: AAS template designed for NDIs of the openZDM Project .. 17

Figure 13: Asset definition component of the DTT application .. 19

Figure 14: The workflow definition component in the DTT application .. 20

Figure 15: The 3D visualisation and dashboard creation component in the DTT application 20

Figure 16: The DTT's configurator .. 21

Figure 17: Choreography approach adopted for the connection and execution of data-driven quality assessment

modules .. 21

Figure 18: The UI of the data-driven quality assessment modules application .. 22

Figure 19: The creation of an alternative scenario through the DST application .. 23

Figure 20: The openZDM platform deployment ... 23

Figure 21: Role-based user interfaces of the openZDM platform .. 24

Figure 22: Viewing Asset Administration Shell registered in the platform as an admin .. 25

Figure 23: Operator view with the DTT application opened .. 26

Figure 24: The AAS model of a generic robot created using the openZDM AAS template. 29

List of Tables

Table 1: Quantity of assets to be modeled per use case .. 15

Table 2: Standardization status of the NDI asset submodels ... 18

Table 3: Technologies used in the implementation of the DTT application ... 18

file:///C:/Users/Paolo%20Catti/Downloads/openZDM_D4.2_v1.0_KS.docx%23_Toc152939767
file:///C:/Users/Paolo%20Catti/Downloads/openZDM_D4.2_v1.0_KS.docx%23_Toc152939777
file:///C:/Users/Paolo%20Catti/Downloads/openZDM_D4.2_v1.0_KS.docx%23_Toc152939782
file:///C:/Users/Paolo%20Catti/Downloads/openZDM_D4.2_v1.0_KS.docx%23_Toc152939782
file:///C:/Users/Paolo%20Catti/Downloads/openZDM_D4.2_v1.0_KS.docx%23_Toc152938920
file:///C:/Users/Paolo%20Catti/Downloads/openZDM_D4.2_v1.0_KS.docx%23_Toc152938921

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 7

Executive Summary

The purpose of this document is to report the main methodologies followed during the development of the initial
version of the openZDM applications and briefly present their first implementation. In line with the project scope,
the openZDM applications developed, are focused on achieving defect identification, reduction, and utterly
proactive quality control in manufacturing.

Furthermore, the openZDM applications are part of the business layer of the AAS-enabled openZDM platform. The
main applications include a (i) Digital Twin Toolset (DTT), allowing the creation and execution of hybrid digital twins,
(ii) several data-driven quality assessment modules, and (iii) a Decision Support Tool (DST), enabling
recommendations for defects reduction, as well as the generation, simulation and evaluation of alternative what-
if scenarios, resulting either to recommendations to the user or to direct control of relevant production assets,
through the openZDM platform.

The methodologies used to create the main openZDM applications and the platform which exposes them are
described in section 2, while section 3 presents their first implementations, as they stand by M18 of the project
lifetime.

The document also discusses about the AAS data model and metamodel used in openZDM to model all necessary
identified assets in its use cases. The methodology and implementation of both the data model and metamodel
are also detailed in sections 2 and 3, respectively.

Lastly, Section 4 concludes with the identified risks and challenges related to the realization of the openZDM
components and Section 5 outlines the lessons learned and recommendations for practitioners.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 8

1. Introduction

The openZDM project aims at providing an innovative open platform that combines advanced ICT solutions and
innovative non-destructive inspection systems, to enable inline quality assessment and proactive quality control
towards zero-defect manufacturing.

A high-level representation of the overall openZDM reference architecture is provided in Figure 1, illustrating
all expected functionalities of the overall openZDM system. In the context of each use case, the architecture will
be instantiated according to the specific needs, constraints, and expectations of each industrial demonstrator,
aiming to extensively test and validate the project outcomes and finally provide the final integrated openZDM
system with its integrated set of applications for quality monitoring and proactive control.

Figure 1: High-level representation of the reference openZDM system

In this context, a number of key software applications are developed in the project including the following:
1. An AAS-driven open platform, which integrates and exposes all other applications. Open APIs are included in

the platform to support connection with third-party tools, some identified in the context of the project, such
as LCA tools, as well as possible future ones, supporting the scalability of the solution. Also, the use of AASs,
and in particular the envisioned AASs of type 3, are expected to provide extensive interoperability with
industrial systems in the middle to long-term, as well as facilitate proactive quality control strategies being
applied at the edge. The platform based on AASs, may either used as a middleware either a solution coming
from the DIMOFAC project or the AASX server, putting the focus on the proper implementation of the AAS
models and less on the middleware used.

Furthermore, the platform is coupled with support and data management services, as illustrated in Figure 1.
2. A set of tools to create and load digital twins, named DTT, coupled with the required services for simulation,

feedforward execution and synthetic data generation. The tool supports the creation of data-driven digital
twins, to physics-based as well as hybrid, whose high-level architecture is presented in section 2.3.2. Also,
alternative visualisations are included, addressing versatile needs and purposes.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 9

3. Several data-driven quality assessment modules, accessible through the openZDM platform, are in charge of
data analysis and defects identification as well as prediction. The tools use data-driven methods, statistical
and machine learning to allow for defect monitoring, analytics visualisation and facilitating defect prediction.

4. A decision support tool, built on top of the quality assessment modules and the digital twins, in charge of
generating recommendations for reducing defects, and/or improving the sustainability of the production
process, either as a whole or partially. Furthermore, this tool can create and evaluate alternative what-if
scenarios executed on top of the digital twin(s) and with the support of the quality assessment modules. The
DTS is also expected to allow for the collection of user feedback and accordingly constrain its future
recommendations, as well as impact the performance of the digital twin and quality assessment modules.

In addition, the openZDM platform supports integration with NDIs deployed at the edge, legacy systems,
equipment and external components. In addition, it supports secure data sharing through the integration of an IDS
connector.

2. Methodologies

2.1 Data modelling

The AAS data model in the context of the openZDM project has followed the relevant standards and regulations as
well as the experience of consortium partners from previous projects. There are 3 types of AAS: AAS Type 1
(Passive) is a serialized file (XML or JSON) which contains static asset information. This type of AAS is the basis for
AAS type 2 and type 3. The AAS Type 2 (Active), is host-based and contains static and dynamic asset information.
Finally, the AAS type 3 (reactive), can communicate with other AAS or software components through peer-to-peer
communication protocols. The openZDM project's goal is to develop, deploy and use type 3 AASs. For its
development, the following 3-step methodology has been used:

• Step 1: Define the assets involved in each use case and the information that each of them can provide (output
data) and the information they require (input data) for the use case they belong to. This information is classified
into Rest data and Motion Data. As a result, a document with the list of assets to be modelled by AAS is
obtained.

• Step 2: Define the Asset Administration Shell structure for each asset identified for each of the use cases. In
this step, the information related to the asset is separated into sub-models (according to the domain to which
the information belongs). The Industrial Digital Twin Association (IDTA) has developed some submodel
templates for AAS in general, such as submodels for TechnicalData, HierarchicalStructures, ContactInformation,
and DigitalNameplate, among others. Of these submodels, their suitability for the different use cases developed
in the openZDM project will be evaluated. If no submodels are found that fit the use cases presented in
openZDM, these templates will have to be designed by the project. Once the structure of the submodels is
defined, the AASs are created using the AASX Package Explorer tool [2]. As a result, an AASX file is obtained that
can be used as AAS type 1.

• Step 3: Define the communication of AASX files with external elements. In this step, the modelled AASs are
hosted on the platform developed in the project for future interaction with other AASs.

2.2 Metadata modelling

The main objective of Industry 4.0 is to facilitate the integration and cooperation of the assets involved in a
manufacturing process. An asset is any object that has value for a company (machines, sensors, products, drawings,
work cells, among others). For this integration and cooperation to be feasible, assets must be described and
connected virtually. The Platform Industrie 4.0 [3] has developed the "Reference Architecture Model Industrie 4.0"
RAMI 4.0, in order to be able to describe all the technical characteristics of an asset throughout its life cycle (Figure
2). RAMI 4.0 approaches the description of an asset by means of a three-dimensional model: Layers, in which the
asset architecture is described in terms of properties, lifecycle & value stream, which is used to describe an asset
at a given point in its lifecycle (from design to final disposition) based on the IEC62890 standard, and hierarchy
levels, which allows functional models to be assigned to specific levels based on DIN EN 62264-1 and DIN EN 61512-
1 standards [4].

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 10

One of the technologies used in Industrie
4.0 is the digital twin. A digital twin can be
implemented using the Asset
Administration Shell (AAS) [5]. The Asset
Administration Shell is a central concept
for representing the technical
functionalities of an asset according to
RAMI 4.0 and enabling interoperability.

The Platform Industrie 4.0 has
proposed an AAS metamodel which
defines mandatory and optional attributes
for all AAS in UML language, as can be seen
in Figure 3.

Figure 3: Overview metamodel of the Asset Administration Shell

Figure 2: RAMI 4.0 Architecture

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 11

The lack of systematic means to integrate the different data lifecycles of different devices leads to so-called
solution silos problems, where solutions for specific use cases lack interoperability [6]. To address this problem, it
is necessary to develop a common information model that allows the representation of data throughout its life
cycle in a language common to all use cases. In the openZDM Project, the AAS metamodel is used as the Common
Information Model (CIM) for all use cases. The AAS Metamodel allows the representation of assets throughout
their life cycle by means of sub-models. Each submodel allows the description of a specific domain of the asset by
means of properties and relationships. The AAS metamodel provides a set of classes and relationships that make
possible the creation of submodels for the description of the different assets in the different use cases in the
openZDM project. The different domains of the asset can be described by means of properties, relationships,
operations, events, collections or lists of these, among others. Existing standards or consortium specifications
provide concepts that can be used to define properties within a submodel. Submodels based on standards can be
considered such as templates which guarantee interoperability [5] and facilitate the modelling of assets.

The openZDM project develops a platform to implement quality management practices in 5 use cases of
different types of production processes, with different types of data stored in different sources. In its current form,
the AAS Metamodel version 2 was used [7].

2.3 Digital Twin Toolset

The DTT application is capable of both creating and loading previously created DTs. A created DT should follow ISO
23247 [8], according to which the fundamental part of a DT is its model. A model in openZDM can be either data-
driven, physics-based or hybrid. In the context of data-driven models, high-quality and quantity historical data are
used to create and train ML models through which the behaviour of the asset can be replicated in the virtual space.
In openZDM to describe an asset’s behaviour through a data-driven model, two ML techniques have been used:
1. The first is the symbolic regression ML algorithm. Through this algorithm, an equation that links the input and

target variables is generated that is based on the provided to it historical data.
2. The second algorithm used is the logistic regression. The logistic regression algorithm was used to describe

input parameters which are of continuous type with categorical target values. Logistic regression was used to
describe production parameters and the probability of the presence or not of a defect on a product.

In the context of physics-based models an asset behaviour is given through, usually, complex mathematical
equations that describe the physical phenomena and provide insight on the behaviour of the asset. Physics-based
models have the ability of explainability however they can be less accurate than a data-driven model. Thus, in
openZDM and in the DTT, a combination of the two has been developed, a Hybrid DT model, where the accuracy
of the physics-based model is iteratively corrected through the data-driven model. A schema of the methodology
followed during the construction of a hybrid model can be seen in Figure 4.

Figure 4: The hybrid digital twin model schema used in the DTT

A hybrid digital twin model is composed of a digital replica of an asset, a data-driven model replicating the under-
consideration behaviour of the physical asset, and a physics-based model using differential equations to model its
behaviour. The created data-driven model provides the data-driven behaviour using ML algorithms and the
physics-based model describes the asset’s behaviour using a set of mathematical equations. Each behavioural

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 12

model has its output and using the deviation between them an error is calculated and controlled to Improve the
accuracy and realism of the digital twin. The control approach aims to receive feedback from the user and constrain
the behavioural models accordingly. Thus, through multiple iterations, the accuracy of the DT is expected to have
significantly improved and in particular the physics-based model which may facilitate explainable
recommendations to be generated.

According to ISO 23247, a functional DT requires the synchronization of the status of the digital twin with the
status of the corresponding physical asset. In the DTT this is handled through the utilization of industry-standard
communication protocols, like MQTT, in order to ensure fast and reliable communication between the physical
asset and the asset in cyber space.

Furthermore, an integral part of the DTT is the visualization part and its reporting component. In the DTT two
methodologies are followed which have been adapted to suit both the visualization and reporting needs.
Visualization is handled both in a dashboard environment through graphs and charts (for descriptive and diagnostic
analytics visualization) and in a three-dimensional environment using 3D models of the assets under study.
Additionally, the production results and simulation results are reported through the visualisation component.

2.4 Data-driven Quality Assessment Modules

The data-driven quality assessment modules can use statistical tests, machine learning and data preprocessing
methodologies to provide predictive, monitoring, diagnostic and descriptive analytics for defect identification,
prediction, and quality assessment. The different modules developed in openZDM to achieve this purpose can be
grouped based on their respective capabilities to a) monitoring, b) predictive and c) process reconfiguration. Figure
5 depicts a classification of the analytical tools based on their objectives and with the respective algorithms that
are employed (note that Figure 5 is not complete but illustrative, particularly with respect to the algorithms
column).

Figure 5: Data-driven quality assessment modules classification based on main objective/functionality.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 13

To begin with, several data preprocessing modules are considered in the context of the openZDM project towards
providing quality insights. The data analysis process requires however data of certain quantify but also quality. For
example, an ML model cannot predict a defect that is never encountered in its training dataset. As such, the
methods incorporated include but are not limited to the following:

• imputation techniques for the removal of missing values;

• data transformation techniques for variable creation;

• visualization techniques for exploratory data analysis;

• the Nelson rules technique for detection of outliers in manufacturing process data.
Additionally, statistical test modules have been developed which are capable of better understanding the
association between variables and gaining inference (drawing meaningful statements and information on the
underlying structure of the data). In further detail, the techniques used in the developed statistical test modules
include:

• Pearson’s, Spearman’s and point biserial correlation techniques for the identification of correlation between
variables;

• Chi-squared test for association identification between categorical variables;

• one way ANOVA for association identification between continuous and categorical variables.
Lastly, different predictive modules have been developed. These modules utilize the pre-processed data coming
from the data preprocessing modules and the modules capable of conducting statistical tests. The predictive
modules are focused on providing proactive quality control through early prediction of defects in a production line.
In more detail, the models incorporated in the quality assessment modules include:

• MultiTarget Support Vector Regressor, Random Forest Regressor for capable of making predictions of multi-
target variables;

• XGBoost, Decision Tree Classifier and kNN Classifiers capable of predicting defects.

2.5 Decision support tool for alternative process configuration

The DST for alternative process configuration in openZDM is responsible for identifying the optimal set of
parameters to be configured to achieve a user input improvement in use case-specific KPIs. The DST follows a
generic approach that can be adapted in every use case that is connected. The DST is connected to the DTT in order
to acquire the input parameters and KPIs that should be improved. Additionally, the DST gets from the DTT the
equation that links the input parameters and the output parameters that should be improved, as well as the
relevant KPIs.

The DST is responsible for conducting feedforward simulation. In order to conduct the simulation, the DST
takes as input the user-defined range of values for the input parameters, the value at which the parameter is
incrementally increased, and the frequency at which a parameter can change, thus simulating a real-world
production where changes to process parameters are not instant and a time horizon which indicates the future
window until which the simulation will be conducted. Lastly, the DST is provided by the user with the targeted
improvement value for the cost/benefit indicators.

The core of the DST uses an optimization algorithm. Multiple optimization algorithms are being taken into
consideration in order to identify the most optimal algorithm for a specific application. Currently, a methodology
using the SLSQP algorithm has been implemented into the DST. Through this algorithm, the DST can use the
equations provided by the DTT and optimize its parameters to generate an optimal set of features that result in
the user-defined KPI improvement. The optimisation algorithm is a gradient-based optimization method. This
methodology was selected due to its capability of optimizing both non-linear and linear mathematical models that
use continuous variables. Through this generic methodology, the DST is capable of optimising a methodology while
being totally decoupled by a specific use case. Additionally, further methodologies are being investigated to be
implemented into the DST, which include the MIP algorithm, the Deep Counterfactual Regret Minimization and the
Sequential Game Models methodologies. Lastly, the what-if scenario results are presented to the user in the UI of
the DST. A visual representation of the followed methodology in the DST can be found in Figure 6.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 14

Figure 6: Methodology followed in the DST

2.6 Platform

The openZDM project follows a waterfall development methodology which starts from requirements elicitation,
where all stakeholders identify the functionality to be fulfilled by the solution and its specification is defined. Next,
the design phase describes the components of the solution and their behaviour, technologies to be adopted, and
interfaces between the various components. After the design phase is completed the implementation of the
solution begins, here all components are developed and integrated to realize the desired behaviour. After the
implementation, the verification phase begins where the solution is tested against the specification to identify
deviations and potential issues. The last phase is maintenance of the solution where updates are issued to enhance
the solution or fix issues uncovered during its operation. Figure 7 illustrates the approach.

Figure 7: Waterfall development methodology of the openZDM platform

The implementation phase in addition adopts the prototype methodology, where developers work on a prototype
version of the final product, gather end-user feedback evaluate it, and gradually add functionalities according to
the design. More specifically, during the first development phase first versions of the data model, digital twin
toolset, data-driven quality assessment modules, decision support tool for alternative process configuration, and
platform services were developed and deployed together with existing components such as Asset Administration
Shell components, the identity management service, and the message broker. As the openZDM platform relies on
data coming from the shop floor AAS were used to represent digitally all different types of assets on the shop floor,
such as products, machines, and non-destructive inspection systems. This on one hand requires modelling the
assets as AAS (see chapters 2.1, 2.1, 3.1.1, and 3.1.2 for more details) and on the other the configuration of
appropriate AAS components that realize the standardized AAS API [9]. The application of AAS enables the platform
to connect new assets in a flexible way using mainly configuration and modelling.

The openZDM platform has been implemented using a layered architecture approach supporting a modular
configuration with high independence and capable of operating using a cloud deployment, full deployment at the
edge or hybrid. The use of docker containers and their management as a cluster through technologies like
Kubernetes or docker swarm ensures the scalability and resilience of the deployed functionalities. In addition, the

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 15

modular approach followed allows for the deployment of redundant modules and along with the error handling
mechanisms facilitates fault tolerance and increased robustness. In addition, robustness is further facilitated by
the project’s integration approach where all the platform modules will be individually tested before being
deployed. Moreover, the platform will support the monitoring of individual components using established software
components such as Prometheus [10]. Lastly, the platform maintainability was also considered during the design
phase employing the following strategies:
1. Increased modularity: enables the removal of components as required in order to eliminate bugs and

vulnerabilities. It also reduces the impact of code changes on other parts of the platform.
2. Capability enhancement: In order to facilitate capability enhancement all APIs of the platform provide

descriptions using OpenAPI Specification [11].
3. Ease of shop-floor asset integration: Using the Asset Administration Shell approach and taking advantage of

the AAS middleware features new assets can be introduced in the platform using modelling practices detailed
in sections 2.1 and 2.2 along with adding configuration in the AAS middleware.

3. First implementations

3.1 Models

3.1.1 Data model

As a result of step 1 of section 2.1, the assets to
be modelled for each use case inside the
openZDM project were identified. Table 1
summarizes this information.

It is possible that other assets are also going
to be modelled according to needs that may
arise, so this table may be updated in the next
stages of the project.

As an example, some submodels of an NDI belonging to one of the project use cases will be detailed below.

NDI AAS Submodels

In Figure 8 all the AAS submodels of an NDI developed in openZDM are shown. In the sections below, each
submodel will be explained.

Figure 8: openZDM developed NDI’s AAS submodels

Identification submodel

The aim of this model is to provide information related to the asset, its name, the use case in which it participates,
a brief description of the asset, the year of installation, and its location in the production line. The identification
submodel can be seen in Figure 9.

Table 1: Quantity of assets to be modeled per use case

Use Case Assets identified

Trailing arm production 15

EV battery production 8

Vehicle body Shop and final assembly 5

Melamine surfaced board manufacturing 4

Bottle manufacturing 2

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 16

Figure 9: Identification submodel

Hierarchical Structures Submodel

This submodel can be used to describe the components that make up the NDI and the relationships between them.
In the openZDM project, vision-based NDIs are comprised of hardware and software. The hardware is composed
of cameras and their accessories, PCs and other devices specific to each use case. The software comprises the
acquisition and processing of the images. IDTA provides a template for this submodel [12], which can be seen in
Figure 10.

Figure 10: Hierarchical structures submodel

Capabilities and Skill Submodels

The capability submodel describes the capabilities that the asset can perform. The capabilities are implemented in
the skill submodel by means of an operation that contains input and output operation variables. The input variables
refer to the information required by the asset to implement its capability. While the output variables are the results
of the implementation of the asset's skill. One of the NDI’s capabilities is defect detection, which is shown in Figure
11, by means of the DefectDetection capability. This capability is implemented in the skill submodel called
Defectdetectionskills, in which the input operations are described as the images taken of the product and the input
operation is the result of the evaluation of those images.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 17

Figure 11: Capabilities and skills submodels

3.1.2 Metadata model

A Common Information Model (CIM) is a
shared semantic model focused on extracting
value from data. The CIM organizes
information about the managed environment
through a set of classes with properties and
associations that provide a well–understood
conceptual framework. The CIM approach
allows the construction of new models to
represent new environments or systems
requirements The AAS metamodel fits the
CIM definition since the different domains of
the asset or new environments in which it
performs can be represented by new
submodels, and therefore is used as CIM in
the openZDM project.

Once the assets have been identified, the
submodels that compose them are created
based on a classification of the information
provided by the assets. There are no
mandatory sub-models for AAS, however,
assets must be uniquely identifiable. In the
approach developed in the openZDM project,
a submodel called "Identification" is created,
in which this unique identifier is modelled as a
property called "Name" and value "assetname".

In the openZDM project, 11 NDIs are used in order to detect non-conformities in the production stages in the
5 use cases. These NDIs are mainly based on vision systems (composed of cameras and processing systems). To
date, the IDTA has not standardized submodels for this type of asset, therefore in openZDM, the submodels are
created with the information required to satisfy the use cases. For this purpose, a template has been designed in
order to express the different NDIs in a uniform way (Figure 12).

Figure 12: AAS template designed for NDIs of the openZDM Project

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 18

The capabilities submodel describes the activities or operations that an asset is capable of performing.
Through this submodel, an asset can make itself known in a distributed environment. The IDTA has standardized a
submodel to specify the capabilities of an asset. The capabilities of an asset are realized by means of Skills,
therefore, the AAS is composed of one or more submodels representing these skills. Skills sub-models are
composed of operations with inputs (generally parameters or external information received by the asset) and
outputs that can be operational data of the asset.

The asset modelling process must guarantee
the interoperability of the modelled assets with
other assets and other environments, therefore
the structure of the submodels may change
throughout the openZDM project in order to
comply with standards specific to each asset
domain. A list of the current standardised
submodels can be found in Table 2. Additionally, an
AAS creating the openZDM AAS template of a
generic robot can be seen in Appendix I.

3.2 Applications

3.2.1 Digital Twin Toolset

openZDM’s DTT application is focused on providing the ability of its user to create a new DT from scratch or load
an already created DT. To realize the DTT application a full-stack architecture was utilized. In addition, the tools,
frameworks, programming languages and databases used can be found in Table 3.

Table 3: Technologies used in the implementation of the DTT application

Type Purpose

Programming languages

JavaScript JavaScript was used in the development of the UI of the application and for backend programming.

Python 3.9 Python, version 3.9, was used in the development of the data-driven and physics-based models.

Tools

Node-RED Node-RED has been integrated into the DTT application in order to provide the user with the ability
to create the workflow of a DT.

Grafana Grafana has been integrated into the DTT application in order to allow the user to create the
dashboard of the DT.

Process Data
Generator

The Process Data Generator node is used inside the Node-RED environment for process data
generation.

Frontend frameworks

React.js React.js was the frontend framework used in order to build the UI of the DTT application.

Backend frameworks

Express.js Express.js was used as the backend server of the UI part of the DTT application

Flask Flask was used as a backend framework responsible for handling HTTP requests between Node-RED
and the data-driven models.

Databases

InfluxDB InfluxDB is part of the DTT application, allowing the user to save time-series data.

MongoDB MongoDB is responsible for storing large files of various formats (.glb models, .pkl models etc) using
GridFS.

Redis Redis is responsible for storing incoming real-time data.

Other

Three.js Three.js is a frontend library and was used to create the component responsible for the 3D
visualisation of an asset’s .glb model.

CSS CSS was used to style the UI of the DTT application.

HTTP HTTP is a communication protocol which was used to communicate between the frontend and
backend of the DTT application.

Docker Docker as a containerization technology, was used for containerisation

Table 2: Standardization status of the NDI asset submodels

Submodel Name Standardized Institution

Identification NO -

HierarchicalStructures YES IDTA

TechnicalData YES IDTA

Capabilities YES IDTA

Parameters NO -

OperationalData NO -

SkillSubmodel NO -

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 19

In the DTT application, it all begins with the landing page of the app through which the user selects to either create
or load a previously created DT. In order to create a DT, the user can select to retrieve the names of the assets that
should be modelled either through the openZDM’s platform AASs or through a manual definition process. To define
an asset, apart from its name the application, requires the user to provide the data-driven model (in a .pkl format)
that describes its behaviour, provide its .glb 3D model for visualising the asset and insert the MQTT topics where
real-time data is published to in the openZDM platform’s MQTT broker. This can be seen in Figure 13.

Figure 13: Asset definition component of the DTT application

The application provides the user with the capability to insert new communication topics to the MQTT broker and
the application subscribes to the defined by the user MQTT topics, with a unique key is created for each subscribed
topic in the Redis database. Inside each key, the corresponding real-time data is saved. Furthermore, a crucial step
to create a DT inside the DTT application is the workflow definition which is handled by Node-RED, where the user
connects the data-driven model with the real-time data from the Redis database and builds any additional data
analytics functionality on top of it as shown in Figure 14 where the workflow of a robot has been created. Following
the workflow definition, the user needs to set up the 3D visualization scene using the respective component built
using Three.js and the DT dashboard using the Grafana component as can be seen in Figure 15.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 20

Figure 14: The workflow definition component in the DTT application

Figure 15: The 3D visualisation and dashboard creation component in the DTT application

Furthermore, the goal is to update the first implementation of the DTT to also include the configurator of the
toolset. The configurator will be responsible for allowing the user to link all the different microservices required to
build a DT according to his/her needs. Currently, an initial version of the UI of the configurator has been created
and it provides a canvas that allows the user to connect some basic microservices as can be seen in Figure 16.
Lastly, the DTT that is currently under development can be considered TRL 3. The plan for the DTT application is to
demonstrate it in an operational environment making it TRL 7 by the end of the project.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 21

Figure 16: The DTT's configurator

3.2.2 Data-driven Quality Assessment Modules

The data-driven quality assessment modules are responsible for providing a set of tools for monitoring and
analysing collected shop floor data using the methodologies presented in section 2.4. The modules development
was conducted with Python and were containerized using
Docker. To connect and run the different modules, a
choreography approach has been followed as depicted in Figure
17 where several modules are connected to each other to form
a service that provides a form of descriptive analytics with
temperature data.

A user can access the connected modules from a web
application developed using JavaScript and the React.js
framework. When the user accesses the application, he/she is
presented with a landing page and an option to choose based
on the two different methodologies, statistical and ML, in which
under each methodology the capabilities of each module can be
selected (monitor, prediction and process reconfiguration). In
its current state, real-time data can be accessed through the
openZDM MQTT broker, and in a similar manner as in the DTT
application the user is requested to provide the MQTT topics
where the module should subscribe to receive real-time data as
it can be seen in the top image of Figure 18. As soon as the user
has defined the MQTT topics, a selection between the available models to carry out the data analysis can be made
as seen in the bottom image of Figure 18, where through real-time data and the selected RFR model, the user can
make predictions and visualize them through graphs presented in the UI. Lastly, currently, the application is on TRL
3, with the intention to demonstrate it in an operational environment of TRL 7 by the end of the openZDM project.

Figure 17: Choreography approach adopted for
the connection and execution of data-driven

quality assessment modules

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 22

Figure 18: The UI of the data-driven quality assessment modules application

3.2.3 Decision support tool

The DST in openZDM is responsible for the generation, execution and evaluation of what-if scenarios. The backend
implementation of the DST was handled with the use of Java and Spring. The UI of the tool has been implemented
by using Jakarta Server Pages (formerly known as JavaServer Pages) in order to create the web page part of the
application. In addition, the styling of the application has been handled with Bootstrap. Furthermore, the
communication between the DST and the DTT uses standardised communication protocols, mainly HTTP requests.
The same implementation approach was used in the communication between the different components of the
DST (frontend and scenario evaluation component using the SLSQP algorithm). Lastly, a MySQL database was used
in the DST for data storage and the application was containerized using Docker.

When accessing the application, the user is presented with the option of creating a new project or accessing
an existing one from the DST database. When creating a new project, the user is automatically presented with the
input parameters that can be included in the what-if scenario generation process taken from the DTT. The user
inputs the minimum and maximum range of the search area for each feature, the step at which the input is
increased or decreased during the search, and the frequency at which each input goes to its next step. Additionally,
from the DTT, the cost/benefit indicators are taken and presented to the user who can insert a target value of
improvement. The user also inputs the time horizon, which indicates how far in the future the desired
improvement in the cost/benefit indicator should be achieved, and this can be seen in Figure 19 where the user
defines the what-if scenarios to be executed for a robot. After the execution of the what-if scenarios, the results
are returned to the UI and presented to the user. Lastly, in the DST application, the user is also capable of retrieving
past what-if scenario results

Technologies used in the development of the DST are already available in the market, like the MySQL database
used. However, the current version of the DST is on TRL 3 with the intention of getting to TRL 7 at the end of the
openZDM project.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 23

Figure 19: The creation of an alternative scenario through the DST application

3.3 Platform

The platform provides the services that support all applications developed in the project (see chapter 3.2), the
integration of shop floor assets, security
mechanisms, and a user interface that
acts as a single point of entry for the
users. As illustrated in Figure 1 the
platform services include data
management and storage, error/event
handling and notifications, user
management, service orchestration and
discovery, and the Asset Administration
Shell middleware for integration with
shop floor assets. As it is evident the
different modules of the platform are
deployed in a distributed fashion using
several resources. Figure 20 illustrates a
potential deployment of components.
Server infrastructure I-IV represent
physical resources but may be broken
down into more than one physical
resource. For example, the Business
layer applications may each be
deployed on separate physical
resources. Edge devices are foreseen to
be deployed remotely at the premises
of the end users and are not considered
part of the infrastructure of the
platform.

The current version of the platform
is deployed using virtual machines,
following the configuration in Figure 20. Using this cloud approach enhances the platform’s flexibility in upgrading

Figure 20: The openZDM platform deployment

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 24

the resources available to it (for example in Server infrastructure II more storage space can be added to facilitate
the needs of the platform, or upgrading the hardware resources such as RAM, CPU, etc.). This approach also
provides guaranteed levels of service, automated backups and data recovery mechanisms.

The main data flow of the platform comes from the edge layer. The main approach is to connect these devices
with the AAS middleware. This can be achieved in several ways. The primary way used in openZMD is to publish
information in the MQTT Broker this information is intercepted by the AAS middleware and fed into the AAS
models. In addition, historical data is recorded both on value changes of the AAS models and the data published in
the MQTT Broker. Another way to handle data from the edge layer is to use a connector deployed with the edge
devices that are capable of monitoring data changes in a given asset and publishing these changes to AAS
middleware using its standardized RESTful API. The AAS middleware provides additional integration capabilities
such as utilizing OPCUA for integrating with shop floor assets.

The platform’s data both historical and MQTT Broker messages are available to the Business layer applications.
The historical information can also be shared using the dataspace approach by deploying an appropriate dataspace
connector and data app. For development purposes, the IDS TRUE connector has been selected and an appropriate
app will be developed to expose data of the platform to data spaces.

 This platform’s data is used to deliver monitoring, prediction, and other functionalities as detailed in section
3.2. All these functionalities are woven together into the platform user interface. All the services and user
interfaces are secured using Keycloak [13] and the OAuth2 standard. Different authentication workflows are
applicable based on the authentication scenario required. For example, user interfaces will redirect users to
Keycloak to provide their credentials and then they are redirected back to the platform’s user interface along with
all relevant information required for getting appropriate authorization tokens for accessing backend services. In
contrast, services may directly access authorization token required by other services using their own credentials.
Keycloak also acts as the primary user management component of the platform.

The platform’s users are organized into the roles of administrators and operators, each role having different
access levels. In addition, the platform user interface is responsible for providing uniform access to all the other
application user interfaces that provide specific functionalities for the users, such as the Digital Twin Toolset.
Depending on the user role the user interface has a different structure as illustrated in Figure 21.

Figure 21: Role-based user interfaces of the openZDM platform

The administrator role (Figure 21 bottom right) has access to mainly configuration functionalities that control what
is visualized to the operator users. These include management of applications (see the applications section 3.2),
visualization of Asset Administrator Shells, and user management. On the top left of Figure 21 the operator, landing

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 25

page is simplified to only provide some overview information. In order to achieve these functionalities, the user
interface is integrated with Keycloak and is supported by a back-end service that retrieves data from the AAS
components of the platform.

The existing AAS models, characterised as type-2 AASs, currently used in the openZDM platform are based on
knowledge acquired from the DIMOFAC project, following the existing standards published by VDI/VDE [14], [15],
[16], [17] and IEC [18]. These components provide the mechanism for registering new AAS, managing the AAS and
their submodels, integrating them with data from shop floor assets, and sorting historical data.

While the AAS components are backend services their data can be accessed by the platform administrator.
This role has access to all Asset Administration Shells that have been registered in the system. In the example of
Figure 22: Viewing Asset Administration Shell registered in the platform as an administrator a single AAS
representing the process carried out by a robot is registered in the system, and the values of the submodel named
‘OperationalData’ are also visualized. Operators also have access to the data of AAs for example in Figure 21 at the
top left the processes menu is opened and the listed processes are reflected based on the AAS. Here AAS are
filtered based on the user profile properties such as user group, users belonging to different user groups will have
access to different AAS.

Figure 22: Viewing Asset Administration Shell registered in the platform as an admin

The operator can use the side menu to access more details on the available processes by using specific applications.
For example, in Figure 23 the Digital Twin application is loaded in the operator user interface.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 26

Figure 23: Operator view with the DTT application opened

In order for the aforementioned functionalities to work the data of the robot executing a process is required. The
process execution is simulated, and the data is fed to the platform’s MQTT broker. Using an appropriate
configuration, the AAS components of the platform intercept the data and feed into the process AAS registered in
the platform. As new data are published the process AAS is constantly updated. The platform also stores the
historical values of the process AAS. The same approach is utilized to connect the assets of the end-users in the
platform where in the place of the simulated robot data is coming from industrial automation components, end-
user services such as Azure IoT hub, and software developed in the project such as Non-Destructive Inspection
components.

In terms of deployment, the platform consists of a mix of components that can be deployed separately, thus
facilitating the scalability of the platform, and supporting different deployment scenarios. Currently, the platform
is deployed on the cloud using Hetzner infrastructure and supporting components such as Non-destructive
inspection components deployed on the shop floor of the end-users. In addition, the on-premise deployment has
also been applied, where the platform components are deployed on the infrastructure of the end users.

As it is evident the platform consists of several components with a mix of ‘Off-the-shelf’ components and new
components implemented during the project. For the individual components, several Technology Readiness Levels
are applicable. For example, components such as Keycloak are available on the market whereas the user interface
which is currently under development can be considered TRL 3. The plan for the platform as a whole is to be
demonstrated in the operational environment making it TRL 7 by the end of the project.

4. Risks and Challenges

During the identification of the methodologies and their implementation risks and challenges were identified. To
begin with, since AAS is in its early stages of maturity as a technology, the documentation around its standards and
specifications is lacking, especially in the field of type 3 AAS. Fundamental aspects of the type 3 AAS
implementation, such as if the contract negotiation is applicable for communication between assets of the shop
floor with one another. Additionally, currently, a challenge that should be overcome in the future for the
implementation of type 3 AAS is if type 3 is meant to be used as software for asset control. Through future research

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 27

in the openZDM project and future specifications released from standardization authorities, type 3 AAS will be
implemented by the end of the project.

Additionally, challenges were faced during the creation of pre-trained predictive Industry 4.0 software
solutions (such as generic predictive analytical models) which were integrated into the data-driven quality
assessment modules application. The main challenge derives from the complexity of data storage in most
manufacturers, whose data was used to train the pre-trained algorithms and the security barriers that must be
overcome before data can be accessed. Often, there is more than one service responsible for storing data, and
data is typically securely stored, requiring specific authorization for access. This complexity in data storage poses
a burden in the development of predictive Industry 4.0 software that relies heavily on high-quality historical data.
Collecting data becomes more demanding due to the possible complexity of the data storage architecture used by
manufacturers. Moreover, while tight data-sharing policies have their benefits, overcoming such security measures
has proven to be a time-consuming process, increasing the development time required for predictive software.
Lastly, in the context of developing predictive Industry 4.0 software solutions, another challenge was identified,
while modern manufacturing heavily relies on acquiring as much data as possible from the shop floor, analysing
this data to find correlations and patterns can be a time-consuming task.

Furthermore, an additional risk was identified during the creation of a hybrid DT model. The model relies
heavily on the performance of the physics-based model. This poses a risk during the creation of the hybrid model
since creating a physics-based model of adequate accuracy is not straightforward, especially when the under-study
asset is comprised of complex physical phenomena.

5. Lessons learned

The adoption of the AAS as a data model in openZDM can provide valuable insights. A lesson that can be learned
from this adoption is that while the AAS as a data model, in general, is currently in its early stages of maturity as a
technology, it is a powerful way of increasing interoperability across manufacturers and companies. The adoption
of AAS, especially the modelling of products as AASs, and through the inclusion of the product’s lifecycle in specific
AAS submodels, the collection and sharing of product data throughout its lifecycle is possible. However, the
technical specification on how to properly implement it and its benefits against other approaches remain unclear,
at least in the short term and considering manufacturers. Furthermore, the implementation of the type 3 AAS, as
well as its reported characteristics for distributed peer-to-peer communication and the incorporation of an
interaction protocol for bidding procedures are two aspects that are not clear on their benefits for shopfloor
operations, as well as their technical implementation, is open to interpretation lacking clarity for the development
teams.

Last, a point that will require particular attention is the service orchestration approach adopted by the
openZDM platform. At the moment two different approaches are followed, a) choreography and b) the use of a
central orchestrator. The selection of an approach or their mix will be a challenge in the implementation of the
final openZDM system as well as the implementation of the other applications.

6. Conclusions

This deliverable provides an overview of the openZDM system, implemented by M18. A reference architecture and
implementation are expected to be provided and further used in the context of exploitation activities, after being
instantiated and deployed for testing and validation in 5 industrial use cases.

The main components have been outlined with the methodologies followed as well as the first
implementations of those components. The combination of those components, NDIs, and external systems,
through the openZDM platform, is expected to provide manufacturers with a set of tools to identify and assess the
quality of their production lines and proactively control them towards reducing defects and improving the
sustainability of their lines.

Future work will aim at the mitigation of the identified risks and challenges and will build on top of the lessons
learned to deliver the updated version of the openZDM platform and its integrated components, with respect to
the project’s workplan.

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 28

7. References

[1] Home - DIMOFAC [WWW Document], n.d. URL https://dimofac.eu/ (accessed 12.4.23).

[2] GitHub - admin-shell-io/aasx-package-explorer: C# based viewer / editor for the Asset Administration Shell

[WWW Document], n.d. URL https://github.com/admin-shell-io/aasx-package-explorer (accessed 12.4.23).

[3] What is Industrie 4.0? [WWW Document], n.d. URL https://www.plattform-

i40.de/IP/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-industrie40.html (accessed 12.4.23).

[4] DIN SPEC 91345:2016-04 “Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) / Reference Architecture Model

Industrie 4.0 (RAMI4.0) / Modèle de reference de l’architecture de l’industrie 4.0 (RAMI4.0)”, ICS 03.100.01;

25.040.01; 35.240.50, April 2016. [Online]. Available: https://www.beuth.de/en/technical-rule/din-spec-

91345-en/250940128

[5] 2 S. Bader, E. Barnstedt, H. Bedenbender, B. Berres, M. Billmann, and M. Ristin, “Details of the Asset

Administration Shell - part 1 : the exchange of information between partners in the value chain of Industrie 4.0

(Version 3.0RC02),” Federal Ministry for Economic Affairs and Climate Action (BMWK), Berlin, May 2022. doi:

10.21256/zhaw-27075.

[6] S. Malakuti, P. Juhlin, J. Doppelhamer, J. Schmitt, T. Goldschmidt and A. Ciepal, "An Architecture and

Information Meta-model for Back-end Data Access via Digital Twins," 2021 26th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA), Vasteras, Sweden, 2021, pp. 1-8, doi:

10.1109/ETFA45728.2021.9613724.

[7] “Asset Administration Shell Specification - Part 1: Metamodel Schema”.

[8] “ISO 23247-1:2021(en), Automation systems and integration — Digital twin framework for manufacturing —

Part 1: Overview and general principles.” Accessed: Nov. 20, 2023. [Online]. Available:

https://www.iso.org/obp/ui/en/#iso:std:iso:23247:-1:ed-1:v1:en

[9] Interoperability at Runtime – Exchanging Information via Application Programming Interfaces (Version

1.0RC02)

[10] Prometheus, “Prometheus - Monitoring system & time series database.” Accessed: Dec. 08, 2023. [Online].

Available: https://prometheus.io/

[11] “OpenAPI Specification - Version 3.0.3 | Swagger.” Accessed: Dec. 08, 2023. [Online]. Available:

https://swagger.io/specification/

[12] “submodel-templates/published/Hierarchical Structures enabling Bills of Material/1/0 at main · admin-shell-

io/submodel-templates,” GitHub. Accessed: Nov. 24, 2023. [Online]. Available: https://github.com/admin-

shell-io/submodel-

templates/tree/main/published/Hierarchical%20Structures%20enabling%20Bills%20of%20Material/1/0

[13] Keycloak [WWW Document], n.d. URL https://www.keycloak.org/ (accessed 12.4.23).

[14] VDI/VDE 2193 Blatt 1:2020-04 Language for I4.0 Components - Structure of messages

[15] VDI/VDE 2193 Blatt 2:2020-01 Language for I4.0 components - Interaction protocol for bidding procedures

[16] VDI/VDE 4004 Blatt 1:2022-07 Testing of networked i4.0 systems - Rough planning of distributed test

processes

[17] VDI/VDE 4004 Blatt 2:2022-12 - Draft Testing of networked I4.0 systems - Minimum requirements for the

digital capture of planning information in distributed test processes

[18] OVE EN IEC 63278-1:2022-06-15 - Draft Asset Administration Shell for industrial applications - Part 1: Asset

Administration Shell structure (IEC 65/925/CDV)

https://www.beuth.de/en/technical-rule/din-spec-91345-en/250940128
https://www.beuth.de/en/technical-rule/din-spec-91345-en/250940128
https://www.iso.org/obp/ui/en/#iso:std:iso:23247:-1:ed-1:v1:en
https://prometheus.io/
https://github.com/admin-shell-io/submodel-templates/tree/main/published/Hierarchical%20Structures%20enabling%20Bills%20of%20Material/1/0
https://github.com/admin-shell-io/submodel-templates/tree/main/published/Hierarchical%20Structures%20enabling%20Bills%20of%20Material/1/0
https://github.com/admin-shell-io/submodel-templates/tree/main/published/Hierarchical%20Structures%20enabling%20Bills%20of%20Material/1/0

08 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 29

Appendices

Appendix I The AAS of a robot created using the openZDM template

Figure 24: The AAS model of a generic robot created using the openZDM AAS template.

6 Dec. 23 METHODOLOGIES AND FIRST IMPLEMENTATION | PU 30

